尊龙凯时(中国)人生就是搏!

便携式光纤型双通道调制叶绿素荧光仪——DUAL-PAM/F
日期:2017-01-04 14:00:11

主要功能

 

测量参数

 

应用领域

特别适合于在野外现场进行深入的 PSII 和 PSI 活性测量,是植物生理学、植物生态学、农学、林学、园艺学、植物逆境研究的强大助手。光纤版设计更轻便,便于携带,另外,光纤版尤其适合附着样品,如苔藓,地衣的样品的原位测量。

 

主要技术参数

 

选购指南

一、高等植物叶片基本款

系统组成:光纤版主机,光纤,光适应叶夹,暗适应叶夹,软件等

注意:便携式光纤型双通道调制叶绿素荧光仪光化光兼具红光和蓝光

DUAL-PAM-F-1.jpg
Dual-PAM/F 基本款

 

二、悬浮样品测量基本款

系统组成::通用型主机,光纤,悬浮液测量用样品池,软件等。

注意:选购悬浮样品测量基本款时可以不选购光适应叶夹,建议选配磁力搅拌器。

_MG_9058 small-2.jpg
Dual-PAM/F 悬浮样品测量基本款

 

Dual-05.jpg

Dual-06.jpg

Dual-09.jpg

同步测量 PSII(红色)和 PSI(蓝色

的诱导曲线

同步测量 PSII(红色)和 PSI(蓝色

的光响应曲线

典型的 P700 测量曲线

Dual-10.jpg

Dual-07.jpg

Dual-08.jpg

打开饱和脉冲时叶绿素荧光信号(红色

和 P700(蓝色)信号变化

以线性时间测量的荧光

快速动力学曲线

以对数时间测量的荧光

快速动力学曲线

 

三、其他可选附件

1,2060-B:拟南芥叶夹,60度角光适应叶夹,与独立微型光量子/温度传感器 2060-M 连用进行测量,特别适于测量拟南芥类小叶片。使用前提是需配置 2060-M。

2,2060-M:微型光量子/温度传感器,测量 PAR 和温度,可连接 MINI-PAM 后独立使用,多与 2060-B 结合使用。

3,MKS-2500:为 KS-2500 配置的磁力搅拌器,专为 KS-2500 配置,装在 KS-2500 下方,带动 KS-2500 内部的转子旋转,对液体样品进行搅拌。

4,2030-B90:90 度角光纤适配器,安装在 2030-B 或 2060-B 上,使光纤与样品成 90 度角。

  

产地:德国WALZ

  

参考文献

数据来源:光合作用文献 Endnote 数据库,更新至 2016 年 9 月,文献数量超过 6000 篇

原始数据来源:Google Scholar

1.        Chovancek, E., et al. (2021). "The different patterns of post-heat stress responses in wheat genotypes: the role of the transthylakoid proton gradient in efficient recovery of leaf photosynthetic capacity." Photosynth Res.

2.        Grinberg, M. A., et al. (2021). "Effect of chronic β-radiation on long-distance electrical signals in wheat and their role in adaptation to heat stress." Environmental and Experimental Botany 184: 104378.

3.        Huang, W., et al. (2021). "The water-water cycle is not a major alternative sink in fluctuating light at chilling temperature." Plant Science: 110828.

4.        Méteignier, L.-V., et al. (2021). "Arabidopsis mTERF9 protein promotes chloroplast ribosomal assembly and translation by establishing ribonucleoprotein interactions in vivo." Nucleic Acids Research.

5.        Wang, Q., et al. (2021). "Effects of sulfur limitation on nitrogen and sulfur uptake and lipid accumulation in Scenedesmus acuminatus." Journal of Applied Phycology.

6.        Wang, Z., et al. (2021). "Characterization and functional analysis of phytoene synthase gene family in tobacco." BMC Plant Biology 21(1): 32.

7.        Amstutz, C. L., et al. (2020). "An atypical short-chain dehydrogenase–reductase functions in the relaxation of photoprotective qH in Arabidopsis." Nature Plants 6(2): 154-166.

8.        Bag, P., et al. (2020). "Direct energy transfer from photosystem II to photosystem I confers winter sustainability in Scots Pine." Nature communications 11(1): 6388.

9.        Basso, L., et al. (2020). "Collaboration between NDH and KEA3 Allows Maximally Efficient Photosynthesis after a Long Dark Adaptation." Plant Physiology 184(4): 2078-2090.

10.     Fréchette, E., et al. (2020). "Variation in the phenology of photosynthesis among eastern white pine provenances in response to warming." Global change biology n/a(n/a).

11.     Fu, H.-Y., et al. (2020). "The availability of neither D2 nor CP43 limits the biogenesis of photosystem II in tobacco." Plant Physiology.

12.     Galvis, V. C., et al. (2020). "H+ transport by K+ EXCHANGE ANTIPORTER3 promotes photosynthesis and growth in chloroplast ATP synthase mutants." Plant Physiology.

13.     He, L., et al. (2020). "Primary Leaf-type Ferredoxin1 Participates in Photosynthetic Electron Transport and Carbon Assimilation in Rice." Plant Journal n/a(n/a).

14.     Ishikawa, N., et al. (2020). "PsbQ-Like Protein 3 Functions as an Assembly Factor for the Chloroplast NADH Dehydrogenase-like Complex in Arabidopsis." Plant and Cell Physiology.

15.     Kalra, I., et al. (2020). "Chlamydomonas sp. UWO 241 exhibits high cyclic electron flow and rewired metabolism under high salinity." Plant Physiology: pp.01280.02019.

16.     Kusano, M., et al. (2020). "Cytosolic GLUTAMINE SYNTHETASE 1; 1 modulates metabolism and chloroplast development in roots." Plant Physiology.

17.     Lee, K., et al. (2020). "Lack of FIBRILLIN6 in Arabidopsis thaliana affects light acclimation and sulfate metabolism." New Phytologist 225(4): 1715-1731.

18.     Li, H., et al. (2020). "A rice chloroplast-localized ABC transporter ARG1 modulates cobalt and nickel homeostasis and contributes to photosynthetic capacity." New Phytologist n/a(n/a).

19.     López-Calcagno, P. E., et al. (2020). "Stimulating photosynthetic processes increases productivity and water-use efficiency in the field." Nature Plants 6(8): 1054-1063.

20.     Reiter, B., et al. (2020). "The Arabidopsis Protein CGL20 is Required for Plastid 50S Ribosome Biogenesis." Plant Physiology.

21.     Sanz-Luque, E., et al. (2020). "Metabolic control of acclimation to nutrient deprivation dependent on polyphosphate synthesis." Science Advances 6(40): eabb5351.

22.     Shinde, S., et al. (2020). "Glycogen Metabolism Supports Photosynthesis Start through the Oxidative Pentose Phosphate Pathway in Cyanobacteria." Plant Physiology 182(1): 507-517.

23.     Storti, M., et al. (2020). "Regulation of electron transport is essential for photosystem I stability and plant growth." New Phytologist n/a(n/a).

24.     Treves, H., et al. (2020). "Multi-omics reveals mechanisms of total resistance to extreme illumination of a desert alga." Nature Plants.

25.     Yang, Q., et al. (2020). "Two dominant boreal conifers use contrasting mechanisms to reactivate photosynthesis in the spring." Nature communications 11(1): 1-12.

26.     Zhang, C., et al. (2020). "Structural insights into NDH-1 mediated cyclic electron transfer." Nature communications 11(1): 888.

收 藏
上一篇:已经没有了
友情链接: